* speed up hop-to-hop calculations
* better and faster trip clustering: trip tries * add --write-colors to extract line colors from OSM data * refactor config parameter names, update default pfaedle.cfg * add --stats for writing a stats.json file * add --no-fast-hops, --no-a-star, --no-trie for debugging * general refactoring
This commit is contained in:
parent
f1822868c5
commit
4c29892658
126 changed files with 14576 additions and 12196 deletions
|
|
@ -5,8 +5,8 @@
|
|||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
C EDijkstra::shortestPathImpl(Node<N, E>* from, const std::set<Node<N, E>*>& to,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
const ShortestPath::HeurFunc<N, E, C>& heurFunc,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
EList<N, E>* resEdges, NList<N, E>* resNodes) {
|
||||
std::set<Edge<N, E>*> frEs;
|
||||
std::set<Edge<N, E>*> toEs;
|
||||
|
|
@ -28,8 +28,8 @@ C EDijkstra::shortestPathImpl(Node<N, E>* from, const std::set<Node<N, E>*>& to,
|
|||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
C EDijkstra::shortestPathImpl(Edge<N, E>* from, const std::set<Node<N, E>*>& to,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
const ShortestPath::HeurFunc<N, E, C>& heurFunc,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
EList<N, E>* resEdges, NList<N, E>* resNodes) {
|
||||
std::set<Edge<N, E>*> frEs;
|
||||
std::set<Edge<N, E>*> toEs;
|
||||
|
|
@ -49,8 +49,8 @@ C EDijkstra::shortestPathImpl(Edge<N, E>* from, const std::set<Node<N, E>*>& to,
|
|||
template <typename N, typename E, typename C>
|
||||
C EDijkstra::shortestPathImpl(const std::set<Edge<N, E>*> from,
|
||||
const std::set<Edge<N, E>*>& to,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
const ShortestPath::HeurFunc<N, E, C>& heurFunc,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
EList<N, E>* resEdges, NList<N, E>* resNodes) {
|
||||
if (from.size() == 0 || to.size() == 0) return costFunc.inf();
|
||||
|
||||
|
|
@ -63,20 +63,24 @@ C EDijkstra::shortestPathImpl(const std::set<Edge<N, E>*> from,
|
|||
for (auto e : from) {
|
||||
C c = costFunc(0, 0, e);
|
||||
C h = heurFunc(e, to);
|
||||
pq.emplace(e, (Edge<N, E>*)0, (Node<N, E>*)0, c, c + h);
|
||||
pq.push(c + h, {e, (Edge<N, E>*)0, (Node<N, E>*)0, c});
|
||||
}
|
||||
|
||||
RouteEdge<N, E, C> cur;
|
||||
|
||||
while (!pq.empty()) {
|
||||
if (costFunc.inf() <= pq.topKey()) return costFunc.inf();
|
||||
auto se = settled.find(pq.topVal().e);
|
||||
if (se != settled.end()) {
|
||||
// to allow non-consistent heuristics
|
||||
if (se->second.d <= pq.topVal().d) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
EDijkstra::ITERS++;
|
||||
|
||||
if (settled.find(pq.top().e) != settled.end()) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
cur = pq.top();
|
||||
cur = pq.topVal();
|
||||
pq.pop();
|
||||
|
||||
settled[cur.e] = cur;
|
||||
|
|
@ -99,8 +103,8 @@ C EDijkstra::shortestPathImpl(const std::set<Edge<N, E>*> from,
|
|||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
||||
const std::set<Edge<N, E>*>& from, const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
bool rev) {
|
||||
const std::set<Edge<N, E>*>& from,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc, bool rev) {
|
||||
std::unordered_map<Edge<N, E>*, C> costs;
|
||||
|
||||
Settled<N, E, C> settled;
|
||||
|
|
@ -109,20 +113,23 @@ std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
|||
std::set<Edge<N, E>*> to;
|
||||
|
||||
for (auto e : from) {
|
||||
pq.emplace(e, (Edge<N, E>*)0, (Node<N, E>*)0, costFunc(0, 0, e), C());
|
||||
pq.push(C(), {e, (Edge<N, E>*)0, (Node<N, E>*)0, costFunc(0, 0, e)});
|
||||
}
|
||||
|
||||
RouteEdge<N, E, C> cur;
|
||||
|
||||
while (!pq.empty()) {
|
||||
auto se = settled.find(pq.topVal().e);
|
||||
if (se != settled.end()) {
|
||||
// to allow non-consistent heuristics
|
||||
if (se->second.d <= pq.topVal().d) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
EDijkstra::ITERS++;
|
||||
|
||||
if (settled.find(pq.top().e) != settled.end()) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
cur = pq.top();
|
||||
cur = pq.topVal();
|
||||
pq.pop();
|
||||
|
||||
settled[cur.e] = cur;
|
||||
|
|
@ -143,8 +150,8 @@ std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
|||
template <typename N, typename E, typename C>
|
||||
std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
||||
Edge<N, E>* from, const std::set<Edge<N, E>*>& to,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
const ShortestPath::HeurFunc<N, E, C>& heurFunc,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
std::unordered_map<Edge<N, E>*, EList<N, E>*> resEdges,
|
||||
std::unordered_map<Edge<N, E>*, NList<N, E>*> resNodes) {
|
||||
std::unordered_map<Edge<N, E>*, C> costs;
|
||||
|
|
@ -160,19 +167,23 @@ std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
|||
|
||||
C c = costFunc(0, 0, from);
|
||||
C h = heurFunc(from, to);
|
||||
pq.emplace(from, (Edge<N, E>*)0, (Node<N, E>*)0, c, c + h);
|
||||
pq.push(c + h, {from, (Edge<N, E>*)0, (Node<N, E>*)0, c});
|
||||
|
||||
RouteEdge<N, E, C> cur;
|
||||
|
||||
while (!pq.empty()) {
|
||||
if (costFunc.inf() <= pq.topKey()) return costs;
|
||||
auto se = settled.find(pq.topVal().e);
|
||||
if (se != settled.end()) {
|
||||
// to allow non-consistent heuristics
|
||||
if (se->second.d <= pq.topVal().d) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
EDijkstra::ITERS++;
|
||||
|
||||
if (settled.find(pq.top().e) != settled.end()) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
|
||||
cur = pq.top();
|
||||
cur = pq.topVal();
|
||||
pq.pop();
|
||||
|
||||
settled[cur.e] = cur;
|
||||
|
|
@ -193,10 +204,148 @@ std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
|||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::relaxInv(RouteEdge<N, E, C>& cur,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
PQ<N, E, C>& pq) {
|
||||
std::unordered_map<Edge<N, E>*, C> EDijkstra::shortestPathImpl(
|
||||
const std::set<Edge<N, E>*>& from, const std::set<Edge<N, E>*>& to,
|
||||
const std::unordered_map<Edge<N, E>*, C>& initCosts, C stall,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
std::unordered_map<Edge<N, E>*, EList<N, E>*> resEdges,
|
||||
std::unordered_map<Edge<N, E>*, NList<N, E>*> resNodes) {
|
||||
/**
|
||||
* Shortest paths from the set <from> to ALL nodes in <TO>, but
|
||||
* init <from> nodes with costs (this is equivalent to adding an auxiliary
|
||||
* node S, connecting it with directed edges to all <from>, setting the
|
||||
* costs of these edges to the initial costs and run a 1->N Dijkstra from S
|
||||
**/
|
||||
|
||||
std::unordered_map<Edge<N, E>*, C> costs;
|
||||
if (to.size() == 0) return costs;
|
||||
|
||||
// init costs with inf
|
||||
for (auto e : to) costs[e] = costFunc.inf();
|
||||
|
||||
SettledInit<N, E, C> settled;
|
||||
PQInit<N, E, C> pq;
|
||||
|
||||
size_t found = 0;
|
||||
|
||||
// put all nodes in from onto the PQ with their initial costs, also set
|
||||
// the initial cost as a heuristic starting point!
|
||||
for (auto e : from) {
|
||||
C iCost = initCosts.find(e)->second;
|
||||
assert(iCost + heurFunc(e, to) >= iCost);
|
||||
pq.push(iCost + heurFunc(e, to),
|
||||
{e, (Edge<N, E>*)0, (Node<N, E>*)0, iCost});
|
||||
}
|
||||
|
||||
RouteEdgeInit<N, E, C> cur;
|
||||
|
||||
while (!pq.empty()) {
|
||||
if (costFunc.inf() <= pq.topKey()) return costs;
|
||||
if (stall <= pq.topVal().dwi) return costs;
|
||||
auto se = settled.find(pq.topVal().e);
|
||||
if (se != settled.end()) {
|
||||
// to allow non-consistent heuristics
|
||||
if (se->second.d <= pq.topVal().d) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
EDijkstra::ITERS++;
|
||||
|
||||
cur = pq.topVal();
|
||||
pq.pop();
|
||||
|
||||
settled[cur.e] = cur;
|
||||
|
||||
if (to.find(cur.e) != to.end()) {
|
||||
found++;
|
||||
costs[cur.e] = cur.d;
|
||||
buildPathInit(cur.e, settled, resNodes[cur.e], resEdges[cur.e]);
|
||||
|
||||
if (found == to.size()) return costs;
|
||||
}
|
||||
|
||||
relaxInit(cur, to, stall, costFunc, heurFunc, pq);
|
||||
}
|
||||
|
||||
return costs;
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
std::unordered_map<Edge<N, E>*, std::pair<Edge<N, E>*, C>>
|
||||
EDijkstra::shortestPathImpl(const std::set<Edge<N, E>*>& from,
|
||||
const std::set<Edge<N, E>*>& to,
|
||||
const std::unordered_map<Edge<N, E>*, C>& initCosts,
|
||||
C stall,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc) {
|
||||
/**
|
||||
* Shortest paths from the set <from> to ALL nodes in <TO>, but
|
||||
* init <from> nodes with costs (this is equivalent to adding an auxiliary
|
||||
* node S, connecting it with directed edges to all <from>, setting the
|
||||
* costs of these edges to the initial costs and run a 1->N Dijkstra from S
|
||||
**/
|
||||
|
||||
std::unordered_map<Edge<N, E>*, std::pair<Edge<N, E>*, C>> costs;
|
||||
if (to.size() == 0) return costs;
|
||||
|
||||
// init costs with inf
|
||||
for (auto e : to) costs[e] = {0, costFunc.inf()};
|
||||
|
||||
SettledInitNoRes<N, E, C> settled;
|
||||
PQInitNoRes<N, E, C> pq;
|
||||
|
||||
size_t found = 0;
|
||||
|
||||
// put all nodes in from onto the PQ with their initial costs, also set
|
||||
// the initial cost as a heuristic starting point!
|
||||
// set the parent to the edge itself - in this version, the parent is ALWAYS
|
||||
// the start edge, as we don't need the exact paths later on
|
||||
for (auto e : from) {
|
||||
C iCost = initCosts.find(e)->second;
|
||||
assert(iCost + heurFunc(e, to) >= iCost);
|
||||
pq.push(iCost + heurFunc(e, to), {e, e, iCost});
|
||||
}
|
||||
|
||||
RouteEdgeInitNoRes<N, E, C> cur;
|
||||
|
||||
while (!pq.empty()) {
|
||||
if (costFunc.inf() <= pq.topKey()) return costs;
|
||||
if (stall <= pq.topVal().dwi) return costs;
|
||||
auto se = settled.find(pq.topVal().e);
|
||||
if (se != settled.end()) {
|
||||
// to allow non-consistent heuristics
|
||||
if (se->second.d <= pq.topVal().d) {
|
||||
pq.pop();
|
||||
continue;
|
||||
}
|
||||
}
|
||||
EDijkstra::ITERS++;
|
||||
|
||||
cur = pq.topVal();
|
||||
pq.pop();
|
||||
|
||||
settled[cur.e] = cur;
|
||||
|
||||
if (to.find(cur.e) != to.end()) {
|
||||
found++;
|
||||
costs[cur.e] = {cur.parent, cur.d};
|
||||
if (found == to.size()) return costs;
|
||||
}
|
||||
|
||||
relaxInitNoResEdgs(cur, to, stall, costFunc, heurFunc, pq);
|
||||
}
|
||||
|
||||
return costs;
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::relaxInv(RouteEdge<N, E, C>& cur,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
PQ<N, E, C>& pq) {
|
||||
// handling undirected graph makes no sense here
|
||||
|
||||
for (const auto edge : cur.e->getFrom()->getAdjListIn()) {
|
||||
|
|
@ -204,42 +353,161 @@ void EDijkstra::relaxInv(RouteEdge<N, E, C>& cur,
|
|||
C newC = costFunc(edge, cur.e->getFrom(), cur.e);
|
||||
newC = cur.d + newC;
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
|
||||
pq.emplace(edge, cur.e, cur.e->getFrom(), newC, C());
|
||||
pq.push(C(), {edge, cur.e, cur.e->getFrom(), newC});
|
||||
}
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::relax(RouteEdge<N, E, C>& cur, const std::set<Edge<N, E>*>& to,
|
||||
const ShortestPath::CostFunc<N, E, C>& costFunc,
|
||||
const ShortestPath::HeurFunc<N, E, C>& heurFunc,
|
||||
PQ<N, E, C>& pq) {
|
||||
if (cur.e->getFrom()->hasEdgeIn(cur.e)) {
|
||||
void EDijkstra::relaxInitNoResEdgs(
|
||||
RouteEdgeInitNoRes<N, E, C>& cur, const std::set<Edge<N, E>*>& to, C stall,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc, PQInitNoRes<N, E, C>& pq) {
|
||||
if (cur.e->getFrom()->hasEdgeIn(cur.e) &&
|
||||
cur.e->getFrom() != cur.e->getTo()) {
|
||||
// for undirected graphs
|
||||
for (const auto edge : cur.e->getFrom()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getFrom(), edge);
|
||||
C newDwi = cur.dwi + newC;
|
||||
|
||||
if (stall <= newDwi) continue;
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
newC = cur.d + newC;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.emplace(edge, cur.e, cur.e->getFrom(), newC, newH);
|
||||
pq.push(newH, {edge, cur.parent, newC, newDwi});
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto edge : cur.e->getTo()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getTo(), edge);
|
||||
C newDwi = cur.dwi + newC;
|
||||
|
||||
if (stall <= newDwi) continue;
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.emplace(edge, cur.e, cur.e->getTo(), newC, newH);
|
||||
pq.push(newH, {edge, cur.parent, newC, newDwi});
|
||||
}
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::relaxInit(RouteEdgeInit<N, E, C>& cur,
|
||||
const std::set<Edge<N, E>*>& to, C stall,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
PQInit<N, E, C>& pq) {
|
||||
if (cur.e->getFrom()->hasEdgeIn(cur.e) &&
|
||||
cur.e->getFrom() != cur.e->getTo()) {
|
||||
// for undirected graphs
|
||||
for (const auto edge : cur.e->getFrom()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getFrom(), edge);
|
||||
C newDwi = cur.dwi + newC;
|
||||
|
||||
if (stall <= newDwi) continue;
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
newC = cur.d + newC;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.push(newH, {edge, cur.e, cur.e->getFrom(), newC, newDwi});
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto edge : cur.e->getTo()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getTo(), edge);
|
||||
C newDwi = cur.dwi + newC;
|
||||
|
||||
if (stall <= newDwi) continue;
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.push(newH, {edge, cur.e, cur.e->getTo(), newC, newDwi});
|
||||
}
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::relax(RouteEdge<N, E, C>& cur, const std::set<Edge<N, E>*>& to,
|
||||
const util::graph::CostFunc<N, E, C>& costFunc,
|
||||
const util::graph::HeurFunc<N, E, C>& heurFunc,
|
||||
PQ<N, E, C>& pq) {
|
||||
if (cur.e->getFrom()->hasEdgeIn(cur.e) &&
|
||||
cur.e->getFrom() != cur.e->getTo()) {
|
||||
// for undirected graphs
|
||||
for (const auto edge : cur.e->getFrom()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getFrom(), edge);
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.push(newH, {edge, cur.e, cur.e->getFrom(), newC});
|
||||
}
|
||||
}
|
||||
|
||||
for (const auto edge : cur.e->getTo()->getAdjListOut()) {
|
||||
if (edge == cur.e) continue;
|
||||
C newC = costFunc(cur.e, cur.e->getTo(), edge);
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
newC = cur.d + newC;
|
||||
if (newC < cur.d) continue; // cost overflow!
|
||||
if (costFunc.inf() <= newC) continue;
|
||||
|
||||
const C& h = heurFunc(edge, to);
|
||||
if (costFunc.inf() <= h) continue;
|
||||
const C& newH = newC + h;
|
||||
if (newH < newC) continue; // cost overflow!
|
||||
|
||||
pq.push(newH, {edge, cur.e, cur.e->getTo(), newC});
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -249,7 +517,22 @@ void EDijkstra::buildPath(Edge<N, E>* curE, const Settled<N, E, C>& settled,
|
|||
NList<N, E>* resNodes, EList<N, E>* resEdges) {
|
||||
const RouteEdge<N, E, C>* curEdge = &settled.find(curE)->second;
|
||||
if (resNodes) resNodes->push_back(curEdge->e->getOtherNd(curEdge->n));
|
||||
while (true) {
|
||||
while (resNodes || resEdges) {
|
||||
if (resNodes && curEdge->n) resNodes->push_back(curEdge->n);
|
||||
if (resEdges) resEdges->push_back(curEdge->e);
|
||||
if (!curEdge->parent) break;
|
||||
curEdge = &settled.find(curEdge->parent)->second;
|
||||
}
|
||||
}
|
||||
|
||||
// _____________________________________________________________________________
|
||||
template <typename N, typename E, typename C>
|
||||
void EDijkstra::buildPathInit(Edge<N, E>* curE,
|
||||
const SettledInit<N, E, C>& settled,
|
||||
NList<N, E>* resNodes, EList<N, E>* resEdges) {
|
||||
const RouteEdgeInit<N, E, C>* curEdge = &settled.find(curE)->second;
|
||||
if (resNodes) resNodes->push_back(curEdge->e->getOtherNd(curEdge->n));
|
||||
while (resNodes || resEdges) {
|
||||
if (resNodes && curEdge->n) resNodes->push_back(curEdge->n);
|
||||
if (resEdges) resEdges->push_back(curEdge->e);
|
||||
if (!curEdge->parent) break;
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue